1

COMMON PRE-BOARD EXAMINATION – 2023 CHEMISTRY THEORY (043)

MAX. MARKS:70 CLASS: XII TIME: 3 HOURS

ANSWERKEY

SECTION A

The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.

1)	Ans: B) Osmotic pressure	1
2)	Ans: D) the overall reaction is 2 Fe + O_2 + 4 H ⁺ \rightarrow 2 Fe ²⁺ + 2 H ₂ O	1
3)	Ans: C) [Fe(CO) ₅]	1
4)	Ans: C) $3^0 > 2^0 > 1^0$	1
5)	Ans: A) diamminedichloridoplatinum(II)	1
6)	Ans: A) Copper liberates hydrogen from acids.	1
7)	Ans: A) $A = C_2H_4$, $B = C_2H_5OH$, $C = C_2H_5NC$, $D = C_2H_5CN$	1
8)	Ans: D) denaturation of protein	1
9)	Ans: A) linkage isomers	1
10)	Ans: A) CH₃CHO	1
11)	Ans: C) Sucrose	1
12)	Ans: B) [Co(CN) ₆] ³⁻	1
13)	Ans: C) Aldohexose	1
14)	Ans: D) Glycogen	1
15)	Ans: D	1
16)	Ans: A	1
17)	Ans: B	1
18)	Ans: D	1

SECTION B

This section contains 7 questions with internal choice in two questions. The following questions are very short answer type and carry 2 marks each.

19) Ans: a) The pressure which must be applied to the solution side to prevent

the passage of solvent into it through a semipermeable membrane.

b) van't Hoff factor gives the extent of association or dissociation of the solute particles in solution.

1

1

1

1

1

1

1

1

- 20) Ans: i) CH₃CH₂CH₃, CH₃OCH₃, CH₃CHO, CH₃CH₂OH
 - ii) (CH₃)₂CHCOOH, CH₃CH(Br)CH₂COOH, CH₃CH₂CH(Br)COOH

OR

- Ans: a. Propanal contain H atom on the carbonyl group but propanone does not. Cleavage of C H bond in propanal is easier than cleavage of C C bond in propanone.
- b. Fehling's test. Benzaldehyde does not react with Fehling's reagent while propanal gives reddish brown precipitate. Chemical eqn

21)
$$\underset{\text{NH}_2}{\text{NH}_2} \qquad \underset{\text{NaNO}_2/\text{HCl}}{\overset{\text{N}_2\bar{\text{Cl}}}{\bigcirc_{-5^{\circ}\text{C}}}} \qquad \underset{\text{Fluorobenzene}}{\overset{\text{N}_2}{\text{BF}_4}} \qquad \underset{\text{Fluorobenzene}}{\overset{\text{N}_2}{\text{BF}_4}} \qquad 1$$

ii. The conversion of primary aromatic amines into diazonium salts

OR

- Ans: a) Butamine is a primary amine, which forms strong intermolecular hydrogen bonding than N-ethylethanamine, which is a secondary amine.
- b) Pyridine is used to remove the side product, HCl from the reaction mixture and to shift the equilibrium to the right hand side.
- 22) Ans: i. 3 Bromo 2 methyl but 1 ene 1
 ii. Any two uses 1
- 23) Ans:

24) Ans: a) Rate = $k [R]^2 = k a^2$ [R] = $\frac{1}{2} a$

Rate = $k (\frac{1}{2} a)^2 = \frac{1}{4} ka^2$

Rate of reaction becomes ¼ th of the initial rate.

b) A reaction which is not truly of first order but under certain conditions becomes a reaction of first order is called pseudo first order reaction.

25)

Benzaldehyde

Benzoyl chloride Ans: i)

SECTION C

This section contains 5 questions with internal choice in two questions. The following questions are short answer type and carry 3 marks each.

 $Mg(s)|Mg^{2+}(0.2M)||Ag^{+}(1 \times 10^{-3}M)|Ag(s)|$ 26) 1 Ans: The cell representation is

$$E_{cell} = E_{cell}^0 - \frac{0.0591}{2} \log \frac{[Mg^{2+}]}{[Ag^{2+}]}$$
 $E_{cell}^0 = E_{cell}^0 - \frac{0.0591}{2} \log \frac{[Mg^{2+}]}{[Ag^{2+}]}$

1

1

1

1

1

1

1

$$E^0(Ag^+/Ag) - E^0(Mg^{2+}/Mg) - rac{0.0591}{2} log rac{0.2}{\left(10^{-3}
ight)^2}$$

$$= +0.80V - (-2.37V) - \frac{0.0591}{2} \log(2 \times 10^5)$$

$$= +3.17V - \frac{0.0591}{2} [\log 2 + \log 10^5]$$

$$= +3.17V - \frac{0.0591}{2} \times 5.3010$$

$$= +3.17V - 0.0591 \times 5.66W$$

$$= +3.17V - \frac{0.0591}{2} \times 5.3010$$

$$= +3.17V - 0.1566V$$

= 3.0134 V

- 27) Ans: a) On heating, H₂O is lost. In the absence of ligand, crystal field splitting does not occur hence the substance becomes colourless.
 - b) CO has empty π orbitals which overlap with filled d orbitals of transition metals and form π – bonds by back bonding. NH₃ can not form such back bonding.
 - c) The difference of energy between two sets of degenerate orbitals after crystal field splitting
- 28) Ans: i. KMnO₄ – KOH

ii. a.
$$CH=NNH-NO_2$$

$$CH_3-C-CH=C-CH_3$$

$$1$$

- 29) Ans: a) The linkage between two monosaccharides through oxygen atom in an oligosaacharide or a polysaccharide
 - b) Sucrose is a dextro rotatory (+66.5°) but after hydrolysis it gives an

equimolar mixture of D-(+)-glucose and D-(-)-fructose, which is laevorotatory. This change of specific rotation from dextro rotation to laevo rotation is called inversion of sugar and the mixture obtained is called invert sugar.

1

1

1

- c) Carbohydrates which on hydrolysis give two to ten molecules of monosaccharides are called oligosaccharides.
- d) These are the organic compounds required in small amounts in our diet but their deficiency causes specific diseases.

30) Ans:
$$\pi = i CRT = i \frac{W2 \times R \times T}{M2 \times V}$$

$$= \frac{3 \times 0.025 \times 0.0821 \times 298}{174 \times 2}$$

$$= 5.27 \times 10^{-3} \text{ atm}$$

OR

Ans:
$$a = 92\% = 0.92$$

$$a = \frac{i-1}{n-1}, 0.92 = \frac{i-1}{2-1}$$

$$i = 1.92$$

$$\Delta Tf = i Kf \frac{w2 \times 1000}{m2 \times w1}$$

$$T_{f}^{0} - T_{f} = \frac{1.92 \times 1.86 \times 0.5 \times 1000}{74.5 \times 100} = 0.24$$

$$T_f = 0 - 0.24 = -0.24^{\circ}C$$

SECTION D

The following questions are case-based questions. Each question has an internal choice and carries 4 (1+1+2) marks each. Read the passage carefully and answer the questions that follow.

- 31) Ans: a) It is defined as conductance of electrolyte when distance between electrodes is 1 cm and area of cross section is 1 cm².
 - b) The electrolytic conductance increases with increase in temperature because the degree of dissociation increases with increase in temperature.

c)
$$\Lambda_{\text{m}} = \frac{K \times 1000}{c}$$

$$K = \frac{\Lambda_{\text{m}} \times c}{1000} = \frac{138.9 \times 1.5}{1000} = 0.20842 \text{ S cm}^{-1}.$$

OR

$$\Lambda^{0}_{\text{(CH3COOH)}} = \lambda^{0}_{\text{(H}^{+})} + \lambda^{0}_{\text{(CH3COO}^{-})} = 349.6 + 40.9 = 390.5 \text{ S cm}^{2} \text{ mol}^{-1}$$

$$a = \frac{\Lambda m}{\Lambda_m^0} = \frac{39.05}{390.5} = 0.1 \text{ or } 10\%$$

1

1

1

1

1

- 32) Ans: a) NH₃, (CH₃)₃N, CH₃NH₂, (CH₃)₂NH
 - b) It is because due to resonance in aromatic amines, the lone pair of electrons on the nitrogen atom gets delocalized over the benzene ring and thus is less easily available for protonation.

$$\begin{array}{c} C_{6}H_{5}-NH_{2} \xrightarrow{NaNO_{2}+2HCl} C_{6}H_{5}-\overset{\dagger}{N_{2}}\overset{-}{Cl}+NaCl+2H_{2}O \\ \text{Aniline} & \text{Benzenediazonium} \\ \text{c)(i)} & \text{chloride} \end{array}$$

(ii)
$$R-NH_2 + HNO_2 \xrightarrow{NaNO_2 + HCl} [R-N_2Cl] \xrightarrow{H_2O} ROH + N_2 + HCl$$

OR

$$CH_3NH_2$$
 + C_6H_5COCl \rightarrow $CH_3NHCOC_6H_5$ + HCl
Methanamine Benzoyl chloride N – Methylbenzamide

SECTION E

The following questions are long answer type and carry 5 marks each. Two questions have an internal choice.

33) Ans: a)
$$k = \frac{2.303}{t} \log \frac{[R]0}{[R]} = \frac{2.303}{20} \log \frac{0.400}{0.289} = 1.62 \times 10^{-2} \text{ min}^{-1}$$

b)
$$1.62 \times 10^{-2} = \frac{2.303}{100} \log \frac{0.400}{[R]}$$

$$5.052 = \frac{0.400}{[R]}$$

$$[R] = 0.0791 M$$

c) Initial rate of reaction = k [R]

$$=1.62\times10^{-2}\times0.400=6.48\times10^{-3}$$
 mol L⁻¹ min⁻¹

OR

Ans: i)
$$\log \frac{k2}{k1} = \frac{Ea}{2.303 \times R} \frac{T2 - T1}{T1T2}$$

$$\log_{\frac{4 \times 10^{-2}}{2 \times 10^{-2}}}^{\frac{4 \times 10^{-2}}{2 \times 10^{-2}}} = \frac{Ea}{\frac{2.303 \times 8.314}{300 \times 310}} = \frac{310 - 300}{300 \times 310} = \frac{11/2}{2}$$

ii) a) slope =
$$\frac{-k}{2.303}$$

$$k = -2.303 \times -2.0 \times 10^{-6} = 4.606 \times 10^{-6} \text{ s}^{-1}$$

b)
$$t_{1/2} = \frac{[R]0}{2k}$$

34)
$$A = \bigcirc \qquad B = \bigcirc \qquad CHO \qquad C = \bigcirc \qquad \qquad 1$$

$$Phenol \qquad o-Hydroxy benzaldehyde \qquad CHO \qquad CHO \qquad \qquad 1$$

$$CHO \qquad COOH \qquad \qquad 1$$

Ans:

Benzaldehyde

OR

1

1

1

1

1

1

1

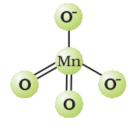
1/2

1

1/2

1/2

$$\begin{array}{c} \text{CH}_3 \\ \downarrow \\ \text{CH}_3 \\ \text{CC} \\ \downarrow \\ \text{CH}_3 \end{array} + \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{Sodium tert, butoxide} \\ \end{array}$$


Ans: i. a.

ii. ethanol gives yellow ppt with iodoform test while diethyl ether does not. $CH_3CH_2OH + 4 I_2 + 6NaOH \rightarrow CHI_3 + HCOONa + 5 NaI + 5 H_2O$ iii. Ethanol, Water, Phenol

Ans: a) i) $8 \text{ MnO}_4^- + 3 \text{ S}_2 \text{O}_3^{2-} + \text{H}_2 \text{O} \rightarrow 8 \text{ MnO}_2 + 6 \text{ SO}_4^{2-} + 2 \text{ OH}_2^{-}$ 35) ii) $Cr_2O_7^{2-} + 3 Sn^{2+} + 14 H^+ \rightarrow 2 Cr^{3+} + 3 Sn^{4+} + 7 H_2O_7^{2-}$ 1

> b) 1) 4 FeCr₂O₄ + 8 Na₂CO₃ + 7 O₂ \rightarrow 8 Na₂CrO₄ + 2 Fe₂O₃ + 8 CO₂ $\frac{1}{2}$

2) 2 Na₂CrO₄ + 2 H⁺ \rightarrow Na₂Cr₂O₇ + 2 Na⁺ + H₂O

Tetrahedral manganate ion (green)

c)

d) Transition metals form large number of complex compounds is due to: 1) comparatively smaller sizes of the metal ions and high ionic charges 2) the availability of d – orbitals for bond formation.